6 resultados para Solanum pimpinellifolium

em Deakin Research Online - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In plants, as in vertebrates, natriuretic peptide (NP) hormones can influence water and solute homeostasis. Here we demonstrate that a synthetic peptide identical to the C-terminus (amino acids 99–126) of the rat atrial natriuretic peptide (rANP) modulates osmotically induced swelling of mesophyll cell protoplasts (MCPs) in a concentration and time-dependent manner. Osmotically-induced volume changes in MCPs are enhanced by plant extracts with NP immunoreactivity and this effect is concentration-dependent. In contrast, pre-treatment of the plant extracts with rabbit anti-human ANP (99–126) antiserum suppresses enhanced osmoticum-induced swelling. Isolated plant peptides (irPNP) that have been immunoaffinity purified with rabbit anti-human ANP (99–126) antiserum also enhance osmotically-induced swelling. While rANP and irPNP cause increases in cGMP levels in MCPs, elevated cGMP levels do not cause increases in osmoticum-dependent swelling but exert an inhibitory effect. These findings are consistent with a NP-dependent, cGMP-independent effect on plant cell volume regulation and a role in homeostasis for peptides that are recognized by antibodies directed against the C-terminus of vertebrate ANPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, Solanum nigrum L. was used in-situ for Cd phytoremediation in Cd polluted soil on Shenyang Zhangshi Irrigation area (SZIA) in 2008. The performance of the plant over the whole growth stage was assessed. Results showed, during the whole experimental stage, the aboveground biomass of single Solanum nigrum L. grew by a factor of 190, from 1.6 ± 0.4 g to 300.3 ± 30.2 g with 141.2 times extracted Cd increase from 0.025 ± 0.001 to 3.53 ± 0.16 mg. Both the distribution of biomass and amount of extracted Cd in the aboveground part of the plant changed according to the growth of the plant. Particularly, the percentage of biomass and extracted Cd in the stem increased from 20% to 80% and from 11% to 69%, respectively. The bioconcentration factor and transfer factor both varied significantly during the growth of the plant and the lowest values were measured at the flowering stage (0.94 ± 0.31 and 3.48 ± 1.14 respectively). The results in this paper provide reference values for the future research on the application of Solanum nigrum L. in phytoremediation and on chemical or/and agricultural strategies for phytoextraction efficiency enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Environmental context Soils contaminated with metals can pose both environmental and human health risks. This study showed that a common crop vegetable grown in the presence of cadmium and zinc readily accumulated these metals, and thus could be a source of toxicity when eaten. The work highlights potential health risks from consuming crops grown on contaminated soils. Abstract Ingestion of plants grown in heavy metal contaminated soils can cause toxicity because of metal accumulation. We compared Cd and Zn levels in Brassica rapa, a widely grown crop vegetable, with that of the hyperaccumulator Solanum nigrum L. Solanum nigrum contained 4 times more Zn and 12 times more Cd than B. rapa, relative to dry mass. In S. nigrum Cd and Zn preferentially accumulated in the roots whereas in B. rapa Cd and Zn were concentrated more in the shoots than in the roots. The different distribution of Cd and Zn in B. rapa and S. nigrum suggests the presence of distinct metal uptake mechanisms. We correlated plant metal content with the expression of a conserved putative natural resistance-associated macrophage protein (NRAMP) metal transporter in both plants. Treatment of both plants with either Cd or Zn increased expression of the NRAMP, with expression levels being higher in the roots than in the shoots. These findings provide insights into the molecular mechanisms of heavy metal processing by S. nigrum L. and the crop vegetable B. rapa that could assist in application of these plants for phytoremediation. These investigations also highlight potential health risks associated with the consumption of crops grown on contaminated soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plant natriuretic peptide immuno-analogues (irPNP) have previously been shown to affect a number of biological processes including stomatal guard cell movements, ion fluxes and osmoticum-dependent water transport. Tissue printing and immunofluorescent labelling techniques have been used here to study the tissue and cellular localization of irPNP in ivy (Hedera helix L.) and potato (Solanum tuberosum L.). Polyclonal antibodies active against human atrial natriuretic peptide (anti-hANP) and antibodies against irPNP from potato (anti-StPNP) were used for immunolabelling. Tissue prints revealed that immunoreactants are concentrated in vascular tissues of leaves, petioles and stems. Phloem-associated cells, xylem cells and parenchymatic xylem cells showed the strongest immunoreaction. Immunofluorescent microscopy with fluorescein isothiocyanate (FITC)-conjugated goat anti-rabbit IgG supported this finding and, furthermore, revealed strong labelling to stomatal guard cells and the adjacent apoplastic space as well. Biologically active immunoreactants were also detected in xylem exudates of a soft South African perennial forest sage (Plectranthus ciliatus E. Mey ex Benth.) thus strengthening the evidence for a systemic role of the protein. In summary, in situ cellular localization is consistent with physiological responses elicited by irPNPs reported previously and is indicative of a systemic role in plant homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potato cyst nematodes (PCN), Globodera rostochiensis (Woll.) and G. pallida (Stone), are major pests of ware and seed potato (Solanum tuberosum L.) crops worldwide and severely impact the movement of potatoes around the globe through quarantine restrictions. In Australia, only G. rostochiensis has been discovered, on four separate occasions between 1986 and 2008. The infested areas are the subject of strict regulation and quarantine procedures and while they are considered to be contained, managing nematode populations remains a priority. This study has identified the G. rostochiensis Ro1 resistance-status of potato cultivars currently grown by Australian potato growers, and new cultivars emerging from the Australian Potato Breeding Program. Resistance was assessed by a simple and robust procedure carried out in a purpose-built quarantine facility. Of the 24 potato cultivars grown in the affected Koo Wee Rup district in 2004, 10 were resistant to nematode infestation, including the locally important cultivar Atlantic. Other cultivars important to the Victorian and Australian potato industry, such as Kennebec, Desiree, Sebago and Coliban, were classified as susceptible. Importantly, this study provided evidence that the Koo Wee Rup PCN population was able to complete its lifecycle on the native plant species, S. aviculare (kangaroo apple), potentially acting as an alternate host and spreading PCN among potato crops.